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Abstract

Sparse subspace learning has been proven to be effective in data mining and machine
learning. In this paper, we propose a novel scheme which performs robust feature selection with
non-negative constraint and sparse subspace learning simultaneously. This work emphasizes joint
12, I-norm and 11 minimization, where the former characterizes the weight matrix and the latter
handles residual matrix to improve robustness. The Inexact Augmented Lagrange Multiplier
framework has been adopted to solve our object function efficiently and extensive experimental
results on original datasets with and without malicious pollutions have demonstrated the

superiority of our new method of feature selection.
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1. Introduction

With the advent of "Big Data" era, it is more convenient for us to obtain various data.
However, we will inevitably encounter massive high dimensional data problems when dealing
with machine learning tasks and data mining researches, such as pattern recognition, text mining,
computer vision, and bio-informatics analysis. Input data without any processing is often
correlated, redundant and sometimes noisy, which not only leads to cost of expensive time and
memory, but also critically degrades the performance of the learning algorithms [30]. Therefore,
seeking the optimal salient features is necessary for us to discover and understand the intrinsic
structure of the data. In order to filter out the non-essential features, two typical methods are often

used: feature extraction [1, 2] and feature selection [3]. This paper focuses on feature selection,
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which is an effective way to reduce the dimensions of the original data. Instead of transforming
data values which is utilized by feature extraction, feature selection algorithm selects a subset of
the most relevant features based on certain evaluation criteria [31].

According to label availability, the algorithms of feature selection can be grouped into
supervised methods [5-10] and unsupervised methods [11-17]. For supervised way, as class
labels are given, it is adequate to keep only the features that are related to or lead to these classes.
But in some real applications, labels of input data are difficult to obtain or expensive to be
demarcated manually, so unsupervised feature selection draws more and more attention in recent
years. Traditional unsupervised feature selection methods have addressed this issue by ranking
top features based on some evaluation criterion computed independently for each feature
(variance [11], trace ratio [8], fisher score [5], information gain [7], and so on). The evaluation
criterions in these algorithms usually reflect the power of each feature in different clusters, but
they utilize the statistical essentials only which neglect to explore the learning mechanism [18].
For this issue, some researchers put more emphasis upon manifold structure and a hand of feature
learning approaches (UDFS [15], NDFS [16], EUFS [20], and MFFS [21]) have been proposed
these days. Specifically, UDFS exploits local discriminative information and feature correlations
where the manifold structure is considered. However, the strategy used by UDFS is inappropriate
since the weight matrix is imposed by an orthogonal constraint [19]. NDFS proposes a non-
negative spectral clustering method to learn the cluster labels of the samples, during which
feature selection is performed simultaneously. These two methods (UDFS and NDFS) are
sensitive to noise or outliers and their computation complexity is the cubic to the dimensions of
the features. In addition, EUFS directly embeds feature selection into a clustering algorithm via
sparse learning without the transformation used in NDFS. From the view of subspace learning,
MFES treats the feature selection process as a matrix factorization problem. The feature subset
obtained by MFFS can approximately represent all features based on a potential assumption that
all the features lie in a linear manifold in a real space. Nevertheless, there are three vulnerabilities
in this process. First, the number of selected features needs to be specified in advance which is
unrealistic in practical applications as the number of useful features is hard to be estimated before
the task. The second is that the elements in the indication matrix cannot guarantee to be zeros or
ones in the experiment. Last, L1-norm based loss function is sensitive to outlies and noises,
which inevitably obstructs the following performance of feature selection.

In this paper we propose a robust unsupervised feature selection method from the viewpoint

of non-negative matrix factorization (NSSLFS). Concretely, the global structure of the input data
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can be captured in the process of the sparse subspace learning, where the weight matrix can be
learned by virtue of the non-negative constraint. By doing this, we perform the robust feature
selection and sparse subspace learning simultaneously, where each sub task can be iteratively
refined by using the result of the other one. Its appealing characteristics are summarized as

follows:

¢ Motivated by previous research [10], a /,, -norm regularization is performed to select features

across all data points with joint sparsity.

e Instead of using /,-norm based loss function that is vulnerable to outliers, a /, -norm based loss

function is adopted in our work to enhance the robustness to outlier.

e Our method performs the unsupervised feature selection task and sparse subspace learning in a
unified framework where a non-negative constraint is imposed into the objective function,
which is logically acceptable in real application.

e We propose to optimize our model by combining the IALM and /, , -norm minimization with

non-negative constraint.
Extensive experiments have been conducted on various original datasets with or without
malicious pollution, whose results validate the effectiveness of the proposed method in terms of

clustering.

2. Matrix factorization criterion of feature selection from subspace learning

In machine learning and data mining, subspace learning techniques have been well studied
and utilized in many applications. These methods usually learn a low-dimensional representation
of high-dimensional space in order to exploit the global structure of data [22, 23]. Clearly, an
effective strategy will more capable to reflect the global information. In this section, a matrix
factorization criterion for feature selection is used from a subspace learning perspective [21]. For

simplicity, we suppose that these features lie in a linear manifold of the real space.

Let x, € R be the i-th data sample, and X =[x, x,,---x,]€ R™ be a data matrix composed
of all samples. H is the coefficient matrix of initial feature space in the selected space, k
indicates the number of selected features, E, is a k -by- k& unit matrix, W is an indicator matrix

in the following form:

1 if the i-th feature is selected
0 otherwise
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From the viewpoint of matrix factorization, feature selection problem is expressed as

follows:

. 2
min X X0 @
s.t. W=0,W'W =E,
This object function provides a unified framework for feature selection and feature extraction.
However, in the practical application, the number of selected features & is difficult to determine

beforehand, leading to the limited feasibility of this model. Experimental results show that the

elements of W cannot satisfy the predefined condition (1).

3. Matrix factorization criterion of feature selection from subspace learning
Inspired by the recent advanced researches of feature subspace learning, we propose a novel

framework to obtain the most meaningful features and to reject the noisy or irrelevant ones. In

this section, we first illustrate the formulation of our method, and then a detailed inexact

augmented Lagrange Multiplier approach is used to solve the objective problem.

3.1 The proposed model

In order to achieve feature selection, the feature weight matrix is constrained to be sparse in
row, which is formulated as -norm minimization regularization term. Meanwhile, norm of the
error matrix  is applied to handle the sparse noise on the feature learning procedure. By
combining these two terms, the foundation to realize the task of feature selection can be

formulated as follow:

min [W],,, +A|E],

W,H,E

s.t. X=XWH+EWeR"™ HeR"™
3)

where A, k are parameters. We call the above model as robust unsupervised feature selection by

nonnegative sparse subspace learning (NSSLFS).
3.2 Optimization algorithm

As can be seen in the previous formulation, our problem involves the /,, -norm which is non-

smooth and cannot be solved in a closed form. As a result, we develop a solution based on the

inexact augmented Lagrange Multiplier framework and alternating minimization technique [25].

The augment Lagrange function J (W,H ,E,Y, 1) of the above problem can be addressed as
81



J(W,H,E,Y,u)= ||W||2,1 +AL||E||1 +(Y,X - XWH —E) +%||X - XWH —E||i
4)

where Y is Lagrange multiplier matrix, g is a positive parameter and || . || » denotes the
Frobenius norm. IALM obtains the optimum solution by iteratively minimizing the augmented
Lagrange function:

(WyioH, 1, E, ) =argminJ, (W, H,E,Y, 1)
w

HE

5)

This problem cannot be solved directly as W, H and E are dependent on each other. Therefore,

the variable W, H and E are alternatively updated in the solving process. Specifically, only one

variable is updated one time with the others fixed.

1) Computing W : Fixing H and E, the optimization problem for updating W is equivalent to
minimize the following model:

min 7], +(Y, X - XWH - E)+ £ | x - xwH - E||. (6)

: 2
s.t. W=0

It can easily be solved by converting to the problem below [10]

min7r(W' DW)+(Y, X - XWH - E) +%||X—XWH—E||§ (7)

s.t. W=0

w' is the i-th row of W . Following

. o L Ly
Here, D is a matrix with their diagonal elements D, :EHWI )

the solution of Non-negative Matrix Factorization (NMF) [27], we introduce multiplicative

updating rules. Let (I):[%} be the Lagrange multiplier for the constraint W >0, the Lagrange

function is
JW)=Tr(W DW)+(Y,X —XWH —E)+ %”X - XWH - E||i +Tr[OWT] (8)

By computing the derivative of (8) with respect to W and setting it as zero, we have
1

2DW+u[XTXWH+XT (E——Y—XHHT +®=0
M

9)
Using the KKT condition [29], ¢,w; =0 we obtain the updating rules:
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(X'YH" + X" XH"),
VVij < VK/ T T T T
(2DW +uX"XWHH" + uX"EH"),

(10)

2) Computing H : Fixing W and E, the optimization problem for H is equivalent to minimize

the following function :

J(H)=<Y,X—XWH—E>+%||X—XWH—E||2F (11)
s.t. H>0
Which can be solved using the similar technique as in 1) , thus, the non-negative updating rule of
H is
W' XY +uW X' X)),
i = Hij T yvT T Tj
(U X" XWH +puW" X" E),

(12)

3) Computing E : Fixing W and H , the optimization problem for E is equivalent to minimize

the following function :

2
J(E)=2|E], +%HX—XWH—E+1Y

u

F

(13)

Obviously, the minimizer of (16) can be computed using the soft-thresholding operator [4].

E

s+l = s+17 7 s+l

S, [X-XW_H +iYS]
" 7

t

=

(14)
Here § is the soft-thresholding operator.
4) Updating Y

Ys+1 = Yv + M (X_XI/VHIHHI _E.Hl)
(15)
5) Updating u
_{ pﬂs lf /'ls Es+l_Es <8||Xs+l |F
:uSJrl - .
: otherwise

(16)

Where, p >1 is a constant, and ¢ is the parameter in the stopping criteria.

Finally, we summarize the H and W update rules of the proposed optimization algorithm in

Algorithm 1 and the IALM strategy adopted to solve the NSSLFS is listed in Algorithm 2.
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3.3 Time complexity analysis

In this section, we briefly discuss the time complexity of each step within the IALM

framework of algorithm 2. Giving the input data matrix size d xn and the indicator matrix size

d x k . Due to the inner loop in updating W, the time complexity in step 2 is O(nd > +kd 2) . The
computational complexity of matrix multiplications in step 3 is O(knd +kd ) The computation
cost for £ and Y are both O(knd) in step 4 and 5. Thus the total time complexity of Algorithm

2 is 0(knd+(k+n)d2), in our case d >>k , the overall computation cost for NSSLFS is

O(I(knd +nd? )) , where ¢ is the number of iterations.

Algorithm 1: A and W update algorithm

Input: W, e R, H e R"™ E e R™,D, e R™ u,Y,
Initialize: 1 =0,/=0,c=0,W =W,,H, = H,
1. Repeat
2. While not converged do
, . (XY H +px"XH)
3. Update (I, )] =(, )J DWW +uX"XWHH + MXZESH;T)y
4. t=t+1
5. end while
6. Update the diagonal matrix D, , as
: 1 1
D, = dlag(2”(w')} 2 yeres 2H(w')f J
7. c=c+l

8. until Converges

9. repeat
(WIXTY, +u W X" X)

10. Update (,, )y =(#, )ff ' (u WTXTE +pu W'TXTXW'UH))

i
11. I=1+1

12. until Converges
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Output: W, =W, ,H_, =H,

10 s+l T T4

Algorithm 2: NSSLFS for optimizing problem (3) via IALM

Input: Data matrix X € R, regularization parameter 1, the dimensions of the subspace

k , and selected feature number p

Initialize: X,E, =0,u,=1000,p=1.6,s=0,W_,H_,D, € R as an identity matrix.

1.
2.

3
4,
5,

6.
7.

Output: Sort all d features according to |

While not converge, do

Update W, by Algorithm 1;

Update H

s+l

by Algorithm 1;
Update Y, using (10);
Update p, using (12);
s=s5+1
If convergence criterion is satisfied then end while else continue

i
Wt

o i=1d, in descending order and select

the top p ranked features.

4 Experiments

In this section, experiments on several datasets are performed to show the effectiveness of

our proposed formulation for the task of unsupervised feature selection.

4.1 Dataset

We conduct our tests on six available benchmark datasets from different fields serve as a

good test bed for an overall merit. Details of these datasets are described in Table 1.

Table 1 Description of the datasets in the experiments

Data Sets #samples  #features  #class Data type
warpAR10P 130 2400 10 Face image
USPS test 2007 256 10 Handwritten digit dataset
scene-classification 2407 294 6 Image library
COIL20 1440 1024 20 Object image dataset
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Brain_ Tumorl 90 5920 5 Biomedical dataset
AMLALL 72 7129 2 Biomedical dataset

4.2 Experiment setup and compared scheme
On each dataset, we compare NSSLFS with some existing well-known feature selection
algorithms:
1. Baseline: All original features are selected.
2. LS: Feature selection method that can best preserve the local manifold structure of data.

3. MCEFS: Features are selected based on spectral regression with /, -norm regularization.
4. NDFS: Features are selected by a joint framework of nonnegative spectral analysis and /, , -

norm regularized regression.
5. EUFS: Feature selection is embedded directly into a clustering algorithm via sparse learning
without transformation.
6. MFFS: A new unsupervised feature selection criterion is developed from the viewpoint of
subspace learning which is treated as a matrix factorization problem.
Following similar settings in previous work, we list the parameters and the numbers of
selected features. In the compared test, we fix the neighborhood size to be 5 for all methods in all

datasets. For MFFS we fix the penalty term to be 10° as used in [21]. All the parameters are tuned

for each method by a “grid-search” strategy from the following set {10’6,10’4,---,104,106} to

compare different unsupervised feature selection algorithms fairly [26, 28]. The number of

selected features p is taken as {20,40,60,---,200} for all datasets. The dimension of the

subspace k is tuned in the range of {20,40, 60,---,200}, We report the best result of every

method among various parameters.

For simplicity, the method based on k-means clustering is adopted to evaluate the
performance of selected features by two widely used metrics: Accuracy (ACC) and Normalized
Mutual Information (NMI). The bigger value is, the better effect is.

However, unstable results ~ were often  obtained  while using k-means  arithmetic
owing to random selection of initial centers. Following the common way, clustering experiments
are repeated 20 times to reduce the statistical variation and the average values with standard

deviation are recorded.
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4.3 Convergence results

As discussed in Section 3, we employ the IALM method to solve the optimization problem
given in (3). Now, we conduct empirical study on convergence of NSSLFS and analysis the
convergence behavior. The convergence curves on 8 test datasets are list in Fig.1, it can be
observed that: 1) Objective function value decreases sharply until convergences to a fixed value.

2) Our model converges within 10 iterations, demonstrating that the proposed algorithm is
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Fig. 1. Convergence curves of the objective function value in (3).

4.4 Clustering results of datasets

We evaluate the performance using raw data first; Table 2 and Table 3 demonstrate ACC
and NMI comparison results of six algorithms and all features as baseline over eight datasets. The
plots of clustering performance in terms of ACC and NMI versus the number of selected feature

on datasets individually are given in Fig.2 and 3 respectively.

Table 2 ACC (%=std) of various unsupervised feature selection methods on different datasets.

The best results are highlighted in bold.

Dataset AllFea  LapScore  MCFS NDFS EUFS MFFS  NSSLFS
warpAR10P 23.58+3.94  30.8843.91 28.6+3.24 39.50£3.07 33.5442.42 33.73+4.06 44.23+3.85
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USPS test 59.0+£3.50  56.93£3.37 60.39£3.55 62.5743.97 60.31+3.87 60.46+3.12  63.64+1.85
scene-classification  57.74+4.12  58.10+4.18  52.37+3.87 59.94+4.34  56.94+4.36 56.16+3.93  61.19+4.44

COIL20 59.1743.98  57.66+4.14  59.75£3.69  61.03+4.46 59.58+5.09 53.39+3.49  62.76+4.42
Brain_ Tumorl  49.44+3.79  50.6146.07 49.06£5.76  67.72£6.75 46.44+3.88 60.33£8.51  77.44+4.05
AMLALL 66.6£5.29  75.0£0.00 65.4+6.70 75.5+3.62 74.2+0.71 67.7£5.66 79.6+1.22

Table 3 NMI (% =% std) of various unsupervised feature selection methods on different datasets.

The best results are highlighted in bold.

Dataset AllFea  LapScore = MCFS NDFS EUFS MFFS  NSSLFS
warpAR10P 20.2845.33  33.7+£3.69 27.05+3.33 41.243.92 35.243.26 33.2+3.84 50.20+4.40
USPS test 56.24+1.68 55.9+1.60 57.46+1.75 582+1.68 57.7£1.43 57.6£1.59 58.37+1.44
scene-classification  39.03+1.49  39.4+1.31 36.89+1.36 40.2+0.93 38.7+0.80 36.3+3.10 41.43£1.94
COIL20 75.58+1.89  72.0+1.70 73.64+£1.95 75.9+2.15 73.6+2.81 69.2+1.35 76.98+2.19
Brain_ Tumorl  29.244.70 30.544.98 33.99+6.17 42.1+£549 259+3.56 39.£4.51 46.£12.27
AMLALL 8.07+4.42 17.13£0.00 9.45+2.88 18.6+4.55 16.41+1.83 9.61£4.02 23.56+2.80

4.5 Datasets with Sparse Noise

The second experiment investigates the robustness of the proposed method to different
levels of sparse noise. We take the warpAR10P dataset for instance, sparse noise within a ratio
varies from 10% to 30% is added onto the original dataset and the clustering results over the
malicious polluted data are evaluated. Similar to the experiment configuration in the first one, we
record ACC and NMI for the methods over the datasets with different ratio of noise in Table 4
and 5.

Table 4 ACC (%=std) of warpAR10P dataset with different ratio of sparse noise. The best results
are highlighted in bold.

ACC AllFea  LapScore  MCFS NDFS EUFS MFFS  NSSLFS

ratio=0.1 24.04£5.22 25.81+2.25 36.31+£3.23 3535+4.10 32.96+3.57 36.38+4.12 43.04+4.50
ratio=0.2 25424549 2881+2.41 30.46£2.59 34.00£3.06 29.58+2.68 33.58+2.78  36.65+2.82
ratio=0.3 25.77+4.91 31.42+2.44 29.124#3.13 33.19+£2.80 29.12+3.01 29.50+4.30  33.58+3.16
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Table 5 NMI (% *std) of warpAR10P dataset with different ratio of sparse noise. The best

results are highlighted in bold.

ACC AllFea  LapScore  MCFS NDEFS EUFS MFFS  NSSLFS

ratio=0.1  21.1£6.99 24.0+£2.79 35.543.69 37.3+3.97 33.5£2.36 37.4+3.31 44.7+4.07
ratio=0.2  21.8+7.06 27.6+3.82 27.1+2.80 34.9+2.95 29.842.21 31.24£3.50 38.442.23

ratio=0.3  22.246.53 31.6+3.49 26.843.94 31.843.83 26.7+£3.12 27.244.05 33.1+4.48

4.6 Discussion

From the results of the Table 2 and Table 3, we derive the following conclusions:

1. Compared with the baseline (all features), feature selection methods can use very few
features to achieve better clustering performance so we obtain higher accuracy and
computational efficiency simultaneously.

2. The nonlinear local geometric structure of data distribution introduced by LS, MCFS and
NDFS plays an important role in clustering. And the non-negative constraint contained in
NDFS and EUFS makes the scaled cluster indication matrix more accurate and reasonable.
DNFS usually yields relatively better results by containing the two superiorities mentioned
above. Although NSSLFS does not use the local structure explicitly, it still achieves higher
ACC and NMI than NDFS by exploiting the underlying structure instead of learning pseudo
labels. Both MFFS and NSSLFS leverage the low dimensional subspace learning scheme,

while NSSLFS is superior to MFFS as the minimization of the regression model and /,, -

norm regularization term enables # to have massive zero rows which is particularly suitable
for feature selection.
We also have the following two observations from Table 4 and Table 5:

1. Compared to other approaches, better performance is obtained by the proposed robust
method against corrupted dataset with sparse noise.

2. When the ratio of corruption varies from 0.1 to 0.3, our algorithm offers quite outstanding

results which only use very few selected features.

Conclusion
The indicator matrix plays an important role in feature selection. In this paper, we introduce

a novel approach to obtain the indicator matrix /¥ with /,, -normal constraint based on the low-
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dimensional sparse subspace learning, where the data may be compact and discriminative instead

of original space. An efficient strategy is designed to optimize the /,, -norm regularized

minimization problem with non-negative constraint, which integrates alternate iteration into

IALM. Extensive experiments demonstrate that NSSLFS is more efficient than some other

existing algorithms in clustering problem with sparse noise.
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